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Abstract— In this paper, we present a complete change detec-
tion system named multimode background subtraction. The
universal nature of system allows it to robustly handle multitude
of challenges associated with video change detection, such as
illumination changes, dynamic background, camera jitter, and
moving camera. The system comprises multiple innovative mech-
anisms in background modeling, model update, pixel classifi-
cation, and the use of multiple color spaces. The system first
creates multiple background models of the scene followed by
an initial foreground/background probability estimation for each
pixel. Next, the image pixels are merged together to form mega-
pixels, which are used to spatially denoise the initial probability
estimates to generate binary masks for both RGB and YCbCr
color spaces. The masks generated after processing these input
images are then combined to separate foreground pixels from the
background. Comprehensive evaluation of the proposed approach
on publicly available test sequences from the CDnet and the ESI
data sets shows superiority in the performance of our system
over other state-of-the-art algorithms.

Index Terms— Computer vision, change detection, background
model bank, background subtraction, color spaces, binary clas-
sifiers, foreground segmentation, pixel classification.

I. INTRODUCTION

V IDEO change detection or Background Subtraction (BS)
is one of the most widely studied topics in computer

vision. It is a basic pre-processing step in video processing and
therefore has numerous applications including video surveil-
lance, traffic monitoring, human detection, gesture recognition,
etc. Typically, a BS process produces a foreground (FG) binary
mask given an input image and a background (BG) model.

BS is a difficult problem because of the diversity in back-
ground scenes and the changes originated from the camera
itself. Scene variations can be in many forms such as, to name
just a few, dynamic background, illumination changes, inter-
mittent object motion, shadows, highlights, camouflage as well
as a multitude of environmental conditions like rain, snow,
and change in sunlight [1]. Likewise, the changes linked to
camera can be due to auto-iris, camera jitter, sensor noise and
pan-tilt-zoom. Existing state-of-the-art techniques can address
only a subset of these challenges and most of them are
sensitive to illumination changes, camera/background motion
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and environmental conditions [2], [3]. No single technique
exists that is able to simultaneously handle all key challenges
and produce satisfactory results.

In this paper, we propose a BS system that is robust against
various challenges associated with real world videos. The
proposed approach uses a Background Model Bank (BMB)
that comprises of multiple Background (BG) models of the
scene. To separate foreground pixels from changing back-
ground pixels caused by scene variations or camera itself,
we apply Mega-Pixel (MP) based spatial denoising to pixel
level probability estimates on different color spaces to obtain
multiple Foreground (FG) masks. They are then combined to
produce a final output FG mask. The major contribution of
this paper is a universal background subtraction system called
Multimode Background Subtraction (MBS) with following
major innovations: Background Model Bank (BMB), model
update mechanism, MP-based spatial denoising of pixel-based
probability estimates, fusion of multiple binary masks, and
use of multiple color spaces for BS process. Preliminary
results of using our system to handle illumination changes and
camera movements were presented in [4] and [5] respectively.
Improvements upon these prior works include:

• a detailed analysis of the fusion of appropriate color
spaces for BS,

• a novel model update mechanism, and
• a novel MP-based spatial denoising and a dynamic model

selection scheme that significantly reduces the number of
parameters and improve computational speed.

BS is well-researched topics in computer vision, therefore,
we demonstrate the performance of MBS by providing a
comprehensive comparison with 15 other state-of-the-art BS
algorithms on a set of publicly-available challenging sequences
across 12 different categories, totalling to 56 video sets.
To avoid bias in our evaluations, we have adopted the same
sets of metrics as recommended by the CDnet 2014 [2].
The extensive evaluation of our system demonstrates better
foreground segmentation and superiority of our system in
comparison with existing state-of-the-art approaches.

The rest of paper is organized as follows. Relevant work
is discussed in Section II. We present and discuss our con-
tributions in Section III and overall system in section IV,
followed by experiments and result comparison in Section V
and conclude the paper in Section VI.

II. RELATED WORK

There are a plethora of BS techniques, many of which
reviewed in surveys like [6], [7], and [8]. We can broadly
divide these into four categories: pixel-based, region-based,
frame-based and learning based [9].
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Pixel-based algorithms form a pixel-wise statistical model
of the scene. The algorithms in this category are based on
simple statistics from mean, mode, running average to complex
multimodal distributions [6], [7]. Although methods relying on
simple statistics like unimodal Gaussian methods are very fast
and computationally inexpensive, they produce relatively poor
segmentation results due to the limited capacity in modelling
real world changes such as camera noise, moving background,
camera jitter, sudden illumination changes etc. The most
popular multimodal techniques in pixel based category are
pixel-wise Gaussian Mixture Model (GMM) [10] and Kernel
Density Estimates (KDE) [11].

The GMM based techniques model the per-pixel distribution
of values observed overtime with a mixture of Gaussians. The
multimodal nature of these techniques allow them to cope
with dynamic background. GMM has been widely used for
different BS systems and various improved versions have been
proposed. For example in [12], the authors take advantage of
color and texture invariance and combine them with GMM
algorithm resulting in a more robust algorithm. However, the
improvement has proved to be computationally expensive and
unsuitable for real time operation. In [13], instead of fixing
the number of components for each pixel authors estimate
the appropriate number of components for each pixel dynam-
ically and thus it overcomes the problem of choosing right
number of components for each pixel. In [14], the authors
further combined motion with pixel-level GMM appearance
models. Other improvements in GMM-based techniques are
summarized in [8].

Another popular algorithm in this category are based on
KDE such as [11] and [15]. For each pixel, these methods
accumulate values from pixel’s recent history and then esti-
mate the probability distribution of the background values. The
distribution is then used to classify whether a pixel belongs to
foreground or background. The kernel density estimator helps
to overcome two problems inherent in GMM based models;
(a) choice of suitable shape for pixel probability distribution
function and, (b) constant need for parameter estimation.

Sample consensus is another non-parametric method that
relies on recently observed pixels to determine if the new
incoming pixel is a FG or BG. SuBSENSE is an example
of sample consensus methods that uses pixel-level feedback
loop mechanism to continuously update and maintain the
pixel’s model [16]. A spatiotemporal feature descriptor is also
used for increased sensitivity, which however entails high
computational costs.

Codebook is another class of techniques that has been
reported in [17] and [18]. It comprises of a codebook for
each pixel which is a compressed form of background. Each
codebook has multiple codewords that are based on a sequence
of training images using a color distortion metric. Incoming
pixels are matched against all background codewords for
classification.

Regardless of the choice of statistical models, pixel-based
algorithms in general suffer from a lack of inter-pixel spatial
dependencies and the constant need of updating the distribu-
tion parameters or model. However, it is difficult to determine
an appropriate update rate to differentiate true foreground from

drastic background changes such as those caused by sudden
variation in illumination or fast moving object.

The second class of techniques are region-based tech-
niques. Unlike their pixel-based counterparts, region-based
techniques exploit local spatial relationships among pixels.
In [15], the authors enforce spatial context among pixels
by incorporating pixel locations into their background and
foreground KDEs using a Markov Random Field framework.
Another region based method is presented in [19] which uses
statistical circular shift moments (SCSM) in image regions for
change detection. Although these methods incorporate spatial
information, their ability in handling change events at various
speeds is questionable - there does not seem to be a ratio-
nal approach in determining proper time interval for model
update.

A different region-based approach, introduced in [20], [21],
and [22], models spatial dependencies by considering blocks
of different sizes instead of pixels individually. The basic
underlying assumption is that the neighbouring pixels undergo
similar variation as the pixel itself. The blocks are formed
over a sequence of training images, followed by training a
Principal Component Analysis (PCA) Model for each spatial
block. In [21], classification is done by comparing a block
in current frame to its reconstruction from PCA coefficients
and declaring it as background if the reconstruction is close.
In contrast to [21] and [22] performs classification using
threshold based on difference between current image and the
back projection of PCA coefficients. PCA-based techniques
are more robust against noise and illumination changes in
comparison to their pixel based counterparts but lack any
update mechanism.

Another region based method named Multiscale Spatio-
Temporal uses a three-level spatio-temporal color/luminance
Gaussian pyramid BG model for each pixel [23]. While it is
robust against dynamic background and shadows, selecting an
appropriate update rate is challenging for this method.

Frame-based methods create statistical BG models for the
entire frame. Many of the frame-based techniques are based
on a shading model, which calculates the ratio of intensities
between an input image and the reference frame or BG
model [9], [24]. Frame-based techniques have not gained as
much as popularity as pixel based approaches but are known
to offer more robust solution against gradual as well as sudden
illumination changes [8].

Based on the shading model, Pilet et al. [25] propose a
Statistical Illumination (SI) model that uses GMM to model
the distribution of the ratio of intensities. In this method, spa-
tial dependence is incorporated in the framework by learning
a spatial-likelihood model. Although this technique is robust
against global illumination changes, it is not able to handle
local illumination changes [9].

Eigen Background (EB) is a frame-based method that
builds an Eigen space over expected illumination changes and
reconstructs the BG image by projecting an input image on
the learned Eigen space [26]. The performance of EB strongly
depends on an ad-hoc threshold and whether the global and
local illumination changes can be well represented by a linear
combination of background scenes in training set.
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Vosters et al. present an improved frame-based technique
by combining both EB and SI models in [9] at the expense of
higher computational cost. EB reconstructs the BG image and
then SI model segments the image into FG and BG regions.
The authors also improve SI by introducing an online instead
of an offline spatial-likelihood model.

Another frame-based technique is Tonal Align-
ment (TA) [27]. For an input image, it first uses the
change detection algorithm in [28] to extract out BG pixels,
subset of which are then used for histogram specification
transform computation. This transformation tonally aligns
the input and background image. FG segmentation is done
by pixel-wise comparison between the input and the tonally-
aligned background image. TA is able to handle global
illumination changes but also fails to deal with local lighting
changes. Apart from these, there exist methods such as
those in [32] and [33] that take advantage of illumination
invariant features such as texture with edge or color. However,
they suffer from the possible absence of texture in certain
areas of image or poor color discrimination in low lighting
conditions.

The fourth class of methods apply traditional machine learn-
ing on different features to build the BG model. For example,
in [29], the authors combine Haar, color, and gradient features
for each pixel in a kernel density framework, and apply SVM
for segmentation. Neural network based approaches have also
gained popularity in recent years. SC_SOBS [30] models the
BG with weights of a neural network, whereas a weightless
neural network named CwisarDH is proposed in [31]. It
buffers previous FG values to robustly handle intermittent
objects. The dependence on training data with positive and
negative labels makes these methods impractical for real world
deployment.

III. SYSTEM INNOVATIONS

Background Subtraction can be summarized as a five-step
process: pre-processing, background modelling, foreground
detection, data validation and model update. Pre-processing
involves simple image processing on input video such as
format conversion and image resizing for subsequent steps.
Background modelling is responsible for constructing a sta-
tistical model of the scene, followed by pixel classification
in the foreground detection step. In the data validation step,
falsely-detected foreground pixels are removed to form the
final foreground mask [6]. The final step is to update the model
if necessary.

Our innovations primarily fall in the use of multiple
color spaces, background model bank for background mod-
elling process, MP formation and label correction for fore-
ground detection, and a novel model update procedure.
In the following sub-sections, we detail each of these
innovations.

A. Multiple Color Spaces for BS

The choice of color space is critical to the accuracy of
foreground segmentation. Many different color spaces includ-
ing RGB, YCbCr, HSV, HSI, lab2000, normalized-RGB (rgb)

have been used for background subtraction. Among these color
spaces, we focus on the four most widely-used color spaces:
RGB, YCbCr, HSV and HSI [34], [35].

RGB is a popular choice for a number of reasons: (a) the
brightness and color information are equally distributed in all
three color channels; (b) it is robust against both environmental
and camera noise [34]; (c) it is the output format of most
cameras and its direct usage in BS avoids the computation
cost of color conversion [35].

The use of the three other color spaces: YCbCr, HSV
and HSI are motivated by human visual system (HVS). The
defining color perception in HVS is that it tends to assign a
constant color to an object even under changing illumination
over time or space [34], [36]. These color spaces segregate
the brightness and color information, with YCbCr on Cartesian
coordinates whereas HSV and HSI on polar coordinates. While
the color constancy makes the BS process more robust against
shadow, highlights and illumination changes, the foreground
detection is less discriminatory if brightness information is not
used [34], [36]–[38].

In comparative studies on color spaces [34], [35],
[37], [39], YCbCr has been shown to outperform RGB, HSI
and HSV color spaces and is considered to be the most suitable
color space for foreground segmentation [34], [35], [37].
Due to its independent color channels, YCbCr is the least
sensitive to noise, shadow and illumination changes. RGB
is ranked second with HSI and HSV at the bottom as their
polar coordinate descriptions are quite prone to noise [34].
The conversion from RGB to YCbCr is also computationally
less expensive than to HSI or HSV.

Based on the above comparison, YCbCr is a natural choice
for segmentation. However, [36] and [37] also identify poten-
tial problems with the YCbCr color space: when current image
contains very dark pixels, the chance of misclassification
increases since dark pixels are close to the origin in RGB
space. The fact that all chromaticity lines in RGB space
meet at the origin makes dark pixels close or similar to
any chromaticity line. Such scenario does not occur only
when illumination levels are low globally, but also happens
when portion of the image becomes darker. This is common
especially in indoor scenes with complex illumination sources
and scene geometry. Shadows casted by objects is one such
example. The exclusive use of YCbCr color space in such
situations will result in a decrease in foreground segmentation
accuracy.

Inspired by the HVS, we propose to use two color spaces:
RGB and YCbCr to handle different illumination conditions.
We then choose the appropriate channels for the scene in
question. This is different from all existing techniques that
employ all channels and only one color space. RGB and
Y channels are used under poor lighting conditions since
chromatic information is uniformly distributed across RGB
channels and Y represents intensity only. During good lighting
conditions, we also employ the color channels (Cb and Cr)
of YCbCr color space to increase foreground segmentation
accuracy. During intermediate lighting conditions, both RGB
and YCbCr color spaces complement each other in providing
a robust FG/BG classification.
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Fig. 1. Binary classification and mask generation.

To support our claim of using multiple color spaces,
a detailed quantitative analysis is presented in section V by
comparing segmentation accuracy across 12 different cate-
gories using each color space separately, two color spaces
combined, and by dynamically choosing color channels.

B. Background Modelling

BG modelling is one of most important steps in a BS
process and the accuracy of the model used directly impacts
the segmentation results. Most BG models use a variant of
multi-modal pixel-wise statistical background model. Such an
approach has two problems: first, it is difficult to determine
the correct number of modes for modelling the pixel prob-
ability distribution function. Second, and more importantly,
inter-pixel dependencies are overlooked, which leads to poor
segmentation results.

In order to model the BG, we propose Background Model
Bank (BMB), which comprises of multiple BG models instead
of a single BG model. To form BMB, each background
training image is treated as a BG model with selected color
channels stacked together as a vector. This initial set of BG
models are then merged together into a number of average BG
models using an iterative sequential clustering procedure. Two
BG mean models (p and q in vector form) with correlation
measure greater than the pre-defined parameter corr_th are
merged and replaced by their average. The correlation measure
is defined as

Corr(p, q)

=
(

(p − μp)(q − μq)′√
(p − μp)(p − μp)′

√
(q − μq)(q − μq)′

)
(1)

where μp and μq are defined as:

μp = 1

|X |
∑

j
p j and μq = 1

|X |
∑

j
q j (2)

This process continues in an iterative fashion unless there are
no more average BG models with Corr > corr_th.

The use of frame-level clustering is motivated by physical
laws that govern scene geometry. Typically real-life scenes
comprise of different types of objects. The variety in configu-
rations and interactions between different types of matter and
objects generate very intricate and infinite scene geometry.
Examples include variations caused by illumination changes,
dynamic changes, camera shaking, camera movement etc. This
diversity makes it difficult to accurately capture and model the
scene. The use of multiple BG models allows us to capture
scene more accurately while keeping spatial dependencies
intact.

Another advantage of BMB is that it is computationally
simpler than other multi-mode approaches – as we will demon-
strate, we choose a model at frame level and ignore the rest
of the BG models in the BMB. While there is an additional
cost on choosing the model at frame level, it incurs minimal
cost because of simple comparison with average BG models
than those that rely on pixel-based multi-mode distributions.

As our experimental results in Section V will demonstrate,
our multiple BG models can capture scene diversity and
camera variations accurately. Comparing to more complex
multi-modal or non-parametric techniques, our model obtain
equal or better results using only simple binary classifier for
pixel classification, resulting in efficient implementation.

C. Binary Classification

In this sub-section, we discuss the binary mask generation
for each of the selected color channels. It is a four step process:
color channel activation/deactivation, pixel-level probability
estimation, MP formation and average probability estimation.
Fig. 1 depicts the binary mask generation process.

1) Color-Channels Activation/Deactivation: This step is
responsible to activate/deactivate the color channels Cb and
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Cr. Both color channels are used if the mean intensity of
input image is greater than empirically determined parameter
channel_th, which otherwise are not employed.

2) Pixel-Level Probability Estimation: Pixel-wise
error,err D (X) is calculated between each color channel
from both RGB and YCbCr spaces and the chosen BG model
as follows.

err D (X) = ∣∣ID (X) − μDn (X)
∣∣ (3)

where D denotes the color channel in question,ID (X) is the
input image, and μDn (X) is the chosen average BG model.

Once we have calculated the error for each individual pixel,
we estimate an initial probability i p for each pixel by passing
them through a sigmoid function.

i p (err D (X)) = 1(
1 + e−err D(X)

) (4)

The rationale behind this conversion is that the higher the
error the more likely that the pixel belongs to the FG.

3) Mega-Pixel Formation: The primarily goal of this step is
to introduce spatial denoising by considering the initial proba-
bility estimates i p and color information of the neighbourhood
pixels under the framework of Super-Pixels (SP) [41].

SPs offers advantage in terms of capturing local context
and significant reduction in computational complexity. These
algorithms combine neighboring pixels into one pixel based
on similarity measure such as color, texture, size etc. We use
the ERS algorithm in [41] to segment the input frame into M
SPs. In [41], the SP segmentation is formulated as a graph
partitioning problem. For a graph G = (V , E) and M number
of SPs, the goal is to find a subset of edges A ⊆ E to
approximate a graph G = (V , A) with at least M connected
sub-graphs. The clustering objective function comprises of two
terms: the entropy rate H of a random walk and a balancing
term B .

maxA H (A) + λB (A) ,

s.t . A ⊆ E and NA ≥ M (5)

where NA is the number of connected components in G.
A large entropy term favors compact and homogeneous clus-
ters, whereas the balancing term encourages clusters with
similar size. For more details, we refer readers to [41].

To mitigate over-segmentation, SPs are combined to form
much bigger Mega-Pixels (MPs) using DBSCAN cluster-
ing [42]. DBSCAN is a density based clustering algorithms
in which clusters are defined as high density areas, whereas
the sparse regions are treated as outliers or borders to separate
clusters. Two SPs are merged together into a MP under the
following criteria:

M P =

⎧⎪⎨
⎪⎩

1 dist ≤ color threshold ∩ S Ps are ad jacent

0 dist > color threshold

∪S Ps are non − ad jacent

For any two adjacent SPs yandz, distance function
is based on mean Lab color difference and is

Fig. 2. Comparison of segmentation with probability measure of each pixel
individually (left), SP based average motion probability estimation (middle),
and MP based average motion probability estimation (right).

defined as:

dist =
∣∣∣μL

y − μL
z

∣∣∣ +
∣∣∣μa

y − μa
z

∣∣∣ +
∣∣∣μb

y − μb
z

∣∣∣ (6)

μch
y = 1

Y

∑Y

np=1
ch(np) (7)

where μch
y represents the mean value of color channel ch =

{L, a, b} of SP y. np is the pixel index and Y is the total
number of pixels in SP y. Our implementation of DBSCAN is
based on [43]. Fig. 1 depicts the overall MP formation process.
Notice the road SPs correctly merged as a single MP.

4) Average Probability Estimation and Labelling: The next
step is to compute the average probability of a MP y, denoted
as AP y, with a total of Y pixels:

AP y = 1

Y

∑Y

np=1
i p(np) (8)

where np is the pixel index and i p is the initial FG/BG
probability estimate of each pixel. The AP is then assigned
to each pixel belonging to that MP. Finally, to obtain Binary
Mask Dmask (X) for each color channel D, the average proba-
bility measure is thresholded using an empirically determined
parameter prob_th.

The use of MP and its respective AP allow us to assign
the same probability to each pixel belonging to the same
object and therefore increases the segmentation accuracy. For
example, all the pixels belonging to the road in Fig. 2 should
be BG. Clearly, in Fig. 2, as we move from left to right,
road pixels with erroneous probability estimates would be
averaged out using neighbouring pixels via SPs or MP, thereby
improving the segmentation accuracy. As MPs respect edge
integrity, the average probability of a MP represents the same
object or part rather than using FG/BG probability estimates
for each individual pixel or SPs.

D. Model Update

This section explains model update mechanism of the pro-
posed system. Model update is an essential component of an
algorithm to deal with scene changes that take place with the
passage of time. The classic approach for model update is to
replace old values in the model with new ones after a number
of frames or time period. Such updating mechanisms can be
problematic since the update rate is difficult to determine. For
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example, a person sitting idly in a scene may become a part
of background if update rate is too fast. Another scenario
could be of a forgotten luggage, in which question arises as
when should it become a part of background or should it ever
become a part of background?

An update mechanism should be able to address two ques-
tions. First, is there a need for model update at all? Second,
what is the appropriate update rate? We argue that rate of
change in number of FG pixels can serve as a good measure
to trigger model update and to determine an appropriate
update rate. In a typical surveillance scene, the number of FG
pixels fluctuates in a relatively narrow range and a significant
change can serves as a trigger for departure from the old
BG model:

modelupdate =
{

1 i f rateO f Change ≥ th

0 otherwi se

where th is an empirically-determined parameter that sig-
nifies a significant enough change for model update. The
rateOfChange is calculated based on the deviation of the
number of FG pixels in current frame from the running mean.
Formally, we define it as:

rateO f Change=
∑

x∈X Ot (X)− 1
h

(∑t−1
i=t−h−1

∑
x∈X Oi (X)

)
1
h

(∑t−1
i=t−h−1

∑
x∈X Oi (X)

)
(9)

where Ot (X) is the output binary mask of current input image
at time t .

Once model update mechanism is triggered and rate-
OfChange is calculated, an update rate function f is used to
map rate of change to determine an appropriate update rate U
and defined as:

U = f (rateO f Change) (10)

In order to understand the need for an update rate func-
tion f , we must first understand how and what type of changes
can occur in a scene. Changes in BG can occur at different
rates from slow to abrupt. The gradual illumination change in
daylight from sunrise to sunset is a good example of a slowly
changing BG and requires a slow update rate. Whereas on
the contrary, there can be abrupt changes such as caused by
sudden illumination changes in indoor environments or due
to a moving camera. Situations such as these require a fast
update rate. Failure to determine an appropriate update rate
can result in too many false positives. Hence it is necessary for
the algorithm to be able to dynamically determine appropriate
update rate for changing BG.

There are different options for choosing an update rate
function f ranging from simple linear to complex func-
tions. Two candidates are a linear function or an exponential
function based on the simplicity of parameters and their
effectiveness. A linear function provides a straightforward
direct relationship between the model update rate and the rate
of change. Exponential function can be used when a more
aggressive response i.e. higher update rate is desired for any
small change in BG. Such function may be more suitable

for coping sudden illumination changes and PTZ camera
movements. In our experiments, we have used a simple linear
function:

U = m ∗ rateO f Change (11)

where m is the slope and can be set by the user to any value
between zero to one. For example with m set to 0.75 and
a rate of change of 1, the calculated update rate would
be 0.75, i.e. less weightage is given to old BG model and
current frame is given more weightage in updating the BG
model.

After determining the update rate, the models are then
updated as follows:

μn (X) = (1 − U) .μn (X) + U.It (X) (12)

where It (X) represents current input frame at time t and
(μn (X)) is the chosen BG model for current frame and is
being updated.

The dynamic model update mechanism allows to cater for
various scenarios in which conventional approaches fail. For
example, no model update will be applied when there is no
FG in the scene or FG is not changing as the rate of change is
close to zero. Lastly, whenever there is a change in BG, it is
able to dynamically determine update rate and then update BG
model.

IV. SYSTEM INTEGRATION

In this section, we describe how individual components
are combined in our system. The proposed system consists
of five steps as shown in Fig. 3. Each step is described
below.

Step 1: BG Model Selection
The first step is to select an appropriate BG Model for the

incoming frame. The selection criterion is based on identifying
the BG model in BMB that maximizes the correlation with
input image I (X):

Corr = arg maxn=1,...,N

×
(

(I − μI )(μn − μ)′√
(I − μI )(I − μI )′

√
(μn − μ)(μn − μ)′

)
(13)

where, I and μn are vector forms of I (X) and μn(X)
respectively. μI and μ are defined as:

μI = 1

|X |
∑

j
I j and μ = 1

|X |
∑

j
μnj (14)

Step 2: Binary Mask (BM) Generation
In this step, the input image and the selected BG model

are first used to estimate an initial probability estimate for
each pixel. The input image is simultaneously passed to
the MP module, which segments the image in arbitrary
number of MPs. Average probability estimates are calcu-
lated for each MP using pixel-level probability estimates
and then thresholded to generate Binary Mask(BM) for each
color channel. We denote the BM for color channel D
as Dmask(X). The BM generation is discussed in detail in
section III.C.



SAJID AND CHEUNG: UNIVERSAL MULTIMODE BACKGROUND SUBTRACTION 3255

Fig. 3. Universal Multimode Subtraction System.

Step 3: Binary Masks Aggregation/Fusion
The BMs are then used to form Foreground Detec-

tion (FGD) masks for RGB and YCbCr color spaces:

FG Dcolorspace
mask (X) =

[∑
D

(Dmask (X))
]

> 1 (15)

For YCbCr color space, if Cb and Cr channels are deactivated
then FG DY CbCr

mask will be reduced to the Y channel BM alone.
Finally the two FGD masks are combined by taking logical
AND between dilated versions of the two to obtain the actual
FGD mask:

FG Dmask (X)

= Dilate(FG DRG B
mask(X))&Dilate(FG DY CbCr

mask (X))

(16)

The dilated versions are to ensure that all true foreground
pixels are captured in the FGD mask.

Step 4: Binary Masks Purging
The FGD mask is then applied to each of the BMs obtained

in step 3. This removes all of the falsely detected foreground
regions and increases our confidence in classifying FG and
BG pixels in the final step. The resulting component masks
are defined as follows:

Dnew
mask (X) = Dmask(X) · Dilate(FG Dmask (X)) (17)

Step 5: Foreground Mask
In the final step of the process, FG mask is obtained by the

logical OR of all the Dnew
mask (X) masks.

V. EXPERIMENTS AND RESULTS

In this section, we compare the proposed system with state
of the art algorithms on publicly available test sequences. Two
datasets are included; CDnet 2014 [2] and ESI [44].

A. CDnet 2014 Dataset

The CDnet 2014 dataset [2] is one of the most
comprehensive datasets available for evaluating BS algo-
rithms. It has 11 different categories: Baseline (BL),
Dynamic Background (DB), Camera Jitter (CJ), Intermittent
Object Motion (IOM), Shadow (SHD), Thermal (TH), Bad
Weather (BW), Low Framerate (LFR), Night Videos (NV), Pan
Tilt Zoom (PTZ) andTurbulence (TB). Each category has 4 to
6 videos totalling to 53 video test sequences. The authors
have clearly identified training and testing data to ensure
consistency for comparing state of the art algorithms.

1) Evaluation Metrics: The authors of [2] use the seven
evaluation metrics:

1. Recall (Re) : T P
T P+F N

2. Speci f ici ty (Sp) : T N
T N+F P

3. FalsePosi tiveRate (F P R) : F P
F P+T N

4. FalseNegativeRate (F N R) : F N
F P+T N

5. Percentageof WrongClassi f ications (PWC) :

100 ∗ (F N + F P)

(F N + F P + T N + T P)

6. Precision (Pr) : T P
T P+F P

7. F − Measure(F M) : 2 ∗ Pr.Re
Pr+Re

An additional metric has been introduced by authors of [2]
for Shadow (SHD) category. This metric determines False
Positive Rate in hard-shadow areas (FPR-S). Finally, in order
to compare the state of the art algorithms, the authors combine
these metrics into an overall average rank (R) and average rank
across categories (RC) metrics. For details of these metrics,
the readers are referred to [2].

In our evaluation, we primarily use F-Measure (FM) for
overall and category-wise comparison purposes for a number
of reasons. First, the authors of [2] indicate strong correlation
of FM with ranks on CDnet website and in general is con-
sidered as a good indicator for comparison purposes. Second,
in [16], the authors identifies potential biasness towards “pre-
cise” method - change detection is an unbalanced classifi-
cation problem as there are more BG pixels in comparison
to FG pixels. As a result, PWC metric would therefore
favour “precise” methods. Furthermore, the ranking relies on
two reciprocal metrics, i.e. FPR and Sp, and hence it will
favour “precise” method. Third, nonlinearity of overall ranks
substantially affect how top methods are ranked and therefore
is not a reliable indicator for comparing methods.

2) Parameter Setting: One set of parameters are used for
the entire dataset: corr_th = 0.99, prob_th = 0.75, M = 300,
colorthreshold = 3, channel_th = 100, th = 0.15 and m = 0.5.
The parameter setting is based on the set that yields overall
best results across all categories. For details of parameter used
by other techniques, we refer readers to the website at [3].
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TABLE I

MBS EVALUATION WITH RGB, YCb Cr AND BOTH (RGB & YCb Cr) COLOR SPACES ON THE CDNET 2014 DATASET

TABLE II

CATEGORY-WISE COMPARISONS ON THE CDnet 2014 DATASET∗

TABLE III

COMPLETE RESULTS FOR MBS ON THE CDnet 2014 DATASET

3) Quantitative Evaluation: In this section, we compare
our proposed MBS system with 15 state of the art algorithms:
Flux Tensor with Split Gaussian models(FTSG) [14],
suBSENSE [16], CwisarDH [31], Spectral-360 [45],
Bin Wang Apr 2014 [46], KNN [13], SC_SOBS [30],
Region-based Mixture of Gaussians (RMoG) [47],
KDE - ElGammal [11], SOBS_CF [48], Mahalanobis
distance [49], GMM-Stauffer & Grimson [10], GMM-
Zivkovic [50], Multiscale Spatio-Temporal BG Model [23]
and Euclidean distance [49]. Table II presents F-Measure
based category-wise comparisons. Table IV provides the
overall comparison in terms of FMoverall. Table III provides
the complete statistics of MBS on the CDnet 2014 dataset.

Furthermore, we provide three additional configurations
of MBS using RGB color space alone, YCbCr color space

alone and RGB and YCbCr combined. These are denoted
by MBS-RGB, MBS-YCbCr and MBS-Both respectively. The
F-Measure based overall and category-wise comparisons for
these configurations are presented in Table I. These additional
comparisons serve two purposes: (a) to quantitatively analyse
the robustness that is offered by selecting appropriate color
spaces and channels in comparison with using a single or
combination of color spaces for every scene/test sequence,
and (b) to analyse strength and weaknesses of color spaces
in different categories.

4) Discussions: We first analyse the performance of dif-
ferent MBS configurations namely MBS-RGB, MBS-YCbCr,
MBS-Both and MBS (i.e. when appropriate color space and
channels are selected). As depicted in Table I, MBS not
only has the highest overall F-Measure but it outperforms
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TABLE IV

OVERALL COMPARISON ON THE CDNET 2014 DATASET∗

other configurations in individual categories as well. This
supports the claim that use of appropriate color space and
channels are critical for segmentation accuracy. The second
best configuration is MBS-Both, which combines the strength
of both color spaces. Among the two remaining, YCbCr
performs marginally better than RGB. MBS-YCbCr is the
most robust in handling shadows with the least FPR-S rate
of 0.397, while MBS-RGB has the worst performance with
the highest FPR-S of 0.591.

As for their performances on each category, NV and BW
categories are affected by low lighting conditions and poten-
tially has poor color discrimination problem. There are two
important observations; (a) as shown in Table I, F-Measure of
MBS-RGB is significantly higher than MBS-YCbCr for both
NV and BW categories and, (b) as per Table I, in NV category,
using all channels deteriorates the segmentation accuracy
because of poor color discrimination in Cb and Cr chan-
nels. On the other hand, significant improvement is achieved
when the chroma channels are automatically deactivated. This
substantiates our earlier claim that RGB and Y channels are
more robust under low lighting conditions or when color
discrimination is poor. The BW category has considerably
better illumination conditions, the Cb and Cr channels are
retained and the use of all channels produce higher segmen-
tation accuracy than using RGB and YCbCr color spaces
alone. In all of the categories except NV, TB and TH (where
there is zero color information or poor discrimination), the
segmentation results are improved with added advantage of
color information.

Next, we compare MBS against other state of the art
algorithms. The following seven key points are observed
from our comprehensive evaluation and results on different
categories.

1. In six out of eleven categories, the proposed system
is among top 3 with 1st position in two of them.
In DB, BL and SHD categories, MBS is not among top

3 but achieves acceptable results with approximately 80%
F-Measure (FM). According to [16], FM ≥ 80% is consid-
ered an acceptable result.

2. In six out of eleven categories, the proposed system is
among top 3 with 1st position in two of them. In DB,
BL and SHD categories, MBS is not among top 3 but
achieves acceptable results with approximately 80% F-
Measure (FM). According to [16], FM ≥ 80% is considered
an acceptable result.

3. In the NV category, we are ranked at 2nd position with
FM of 0.534. Like other top methods, the performance is
affected by halos and reflections caused by strong head-
lights and low visibility.

4. In the LFR category, MBS has FM of 0.618, which is
slightly less than FM of 0.644 of top performing method.
The result is poor for all methods in this category. It is
important to mention that MBS performs poorly in only
one of four test sequences in LFR category. This particular
test sequence ‘port_0_17fps’ is recorded at 0.17fps with
wavering lighting conditions and intense dynamic behav-
ior of water and boats causing the overall FM to drop
down.

5. It is important to note the marked difference in performance
of our algorithm against others in the two moving camera
categories; PTZ and CJ. Most of the existing state of the
art fail due to static camera assumption, whereas the frame
level BG modeling and MP spatial denoising approach
of proposed system allows it to handle both static and
moving camera video sequences and thus make our system
universal. We have FM of 87.4% for CJ and 60.9% for
PTZ. Although our FM is significantly higher than others,
better results (>80% F-Measure) could be achieved for the
PTZ category if sufficient training data, especially for the
“continuousPan” and “zoomInZoomout” video sequences
are available.

6. IOM category involves objects being placed and removed
intermittently, our innovative model update mechanism and
MP based spatial denoising allows MBS to achieve FM
of 76.36% and is placed at 2nd position. The MP approach
allows to handle intermittently placed objects. Consider the
situation where a box is on a sofa and was learnt as a
part of BG. As soon as the box is removed the pixel-level
estimates would classify those pixels as FG, however all the
neighboring pixels belonging to sofa will average those out
and therefore will have no effect on segmentation accuracy
while model can be gradually updated. None of the methods
in this category is able to produce the defined acceptable
FM level ≥ 80%. In BW and TH categories, MBS achieves
acceptable results and is placed at 3rd and 2nd position
respectively. Our worst performance is in TB category.
In general for all categories, MBS is always placed among
top 5 out of 15 methods.

7. MBS achieves third lowest False Positive Rate
Shadow (FPR-S) of 0.465 out of 15 state of the art
algorithms. This measure is recommended by the authors
of dataset to test algorithms ability to suppress pixels
specifically in Shadow regions. It is important to note that
none of the top performing methods is able to achieve
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Fig. 4. Foreground Segmentation results of MBS on example frames from CDnet 2014 dataset. Input image (Row 1), Ground truth (Row 2) and MBS
output(Row 3).

lower FPR-S than ours, which is significantly lower than
top methods.

8. Table IV provides an overall comparison of MBS
against 15 state of the art algorithms on CDnet
2014 Dataset. MBS has the third highest overall
F-Measure of 0.7179 and is a top performing method.
None of the methods except top 3 including ours is able
to achieve an overall FM ≥ 70%. For metrics of all
15 methods, we refer readers to [2] and [3].

5) Qualitative Results: Fig. 4 presents some sample
results of proposed system for different categories of CDnet
2014 dataset. Complete set of results for all categories are
available at the official CDnet 2014 website [3] and addition-
ally videos at our website [51].

B. ESI Dataset

Robustness of BS algorithm against sudden illumination
changes is very critical to its success in real life scenarios.
This is especially true for indoor environments, where sudden
lighting change often occurs during door opening and closing,
switching light on and off etc. CDnet 2014 dataset lacks such a
category. As a result, we include the ESI dataset and, instead of
comparing with general BS algorithms, we compare MBS with
algorithms that specialize in dealing with this challenge. In our
opinion, ESI dataset [44] is the most challenging publicly
available test dataset in terms of sudden illumination changes.

ESI dataset comprises of 5 test sequences; sofa, walking,
chair, scene1 and scene2 [9]. They have 382, 734, 573, 750
and 154 frames respectively. Since the test sequences sofa,
chair and walking have the same background scene/model,
we combine these three into a single test sequence “House”
comprising of 1689 frames. We now discuss the evaluation
metrics, parameter setting for all test sequences and also
present quantitative and qualitative results.

1) Evaluation Metrics: For quantitative evaluation of ESI
dataset, we use three metrics as defined earlier; precision (Pr),
Recall (Re) and F- measure. Precision and Recall are cal-
culated for whole of a test sequence as arithmetic mean
over all frames. Using this precision and recall, F-measure is
calculated for each test sequence. Overall F-Measure is used
for comparison purposes, which is simply mean FM of all test
sequences in this category.

TABLE V

PRECISION, RECALL AND F-MEASURE OF MBS ON ESI DATASET

2) Parameter Setting: One set of parameters are used for
the entire dataset: corr_th = 0.99, prob_th = 0.75, M =
300, colorthreshold = 3, channel_th = 100, th = 0.15 and
m = 0.5. The parameter setting is based on the set that yields
the overall best results across all test sequences. Table V
reports the number of training images (IMG) used for making
BMB.

3) Quantitative Evaluation: Overall as well as individual
results for each test sequence are tabulated in Table V.
A comparison of existing state-of-the-art techniques with
MBS is depicted in Fig. 6. The techniques include; Eigen
background based Statistical Illumination (ESI) [9], Statistical
Illumination (SI) [25], Eigen Background (EB) both dynamic
and fixed [26], [52], Tonal Alignment (TA) [27] and Adaptive
Background Mixture Model (ABMM) [53]. The results for
these techniques are obtained from [9].

Clearly, as shown in Fig. 6 MBS outperforms state of the
art in handling illumination changes.

4) Qualitative Results: For qualitative results, we choose
the ESI technique as benchmark for comparison purposes.
Fig. 5 not only presents comparative results of our approach
on some of example frames from scene1, scene2 and house
test sequences, but also depicts the challenging nature and
variation of illumination in these test sequences. Complete
comparative video of all test sequences with ground truth and
input images can be found at our website [51].

C. Processing Speed

The proposed system is currently implemented in Matlab
and run on an Intel core i5 PC with 8GB RAM. For a
typical image resolution of 320 × 240, the current system
in its coarse form is able to achieve ∼ 10 fps if both color
spaces i.e. all color channels are used. Approximately, 70% of
processing time is consumed by SP segmentation algorithm,
which is an external component. With code optimization and
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Fig. 5. Foreground segmentation results of example frames from test sequencescene1 (columns 2-5), house (columns 6-9) and scene2 (column 10). Input
image (Row 1), Ground truth (Row 2), ESI output (Row 3) and MBS output (Row 4).

Fig. 6. ESI dataset F-measure.

implementation in C++, the system is expected to meet real
time requirements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a universal BG subtraction
system that exploits multiple BG models and computationally
inexpensive pixel-level comparison to generate initial proba-
bility estimates, which undergo spatial denoising by forming
MPs. To separate vision tasks based on illumination condi-
tions, we use RGB and Y color channels to for low light vision
and CbCr for bright light to provide more accurate foreground
segmentation. The introduction of FG dependent model update
mechanism eliminates the need to tune parameters for every
test sequence.

Comprehensive evaluations of the proposed system over
12 different challenging categories comprising of 56 video
test sequences demonstrate the capability and flexibility of
proposed system over wide variety of environmental condi-
tions. In 10 out of 12 categories, MBS ranks among top 3 or
achieve acceptable results. MBS is clearly a top performing
method that outperforms state of the art especially in the
moving camera categories and achieves best results for shadow
suppression among top methods.

The current implementation of our algorithm is in MAT-
LAB. Code optimization and implementation of algorithm in
C/C++ are part of our future work. All results have been made
available at official CDnet 2014 website [3].
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